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Abstract-This paper presents the results of computations for a fully developed laminar flow in rod cluster 
assemblies. The problem is solved by a finite difference method using a sector approach, where only the 
smallest symmetry segment of the cluster is considered to be the characteristic flow area. The pressure drop 
characteristics are reported in terms of friction factor Reynolds number products and are compared with 
those available in the literature. Nusselt numbers are presented for several configurations. The results are 
expressed as functions ofchannel wall spacing, radial displacement of the rod rings, the number of rods in the 

assembly and rod diameters. 

NOMENCLATURE 

b,, b,, b3, radii of the peripheral rod 
rings nondimensionalised with 

respect to R, ; 

rod diameter; 
hydraulic diameter based on wetted 

4 x flow area 
perimeter, D, = 

wetted perimeter ’ 

hydraulic diameter based on heated 

4 x flow area 
perimeter, D,, = 

heated perimeter ’ 

hydraulic diameter parameters 
nondimensionalised with respect 

to R,; 
Fanning friction factor; 

heat-transfer coefficient ; 
h,, h,, d, e, directional distances (see Fig. 2); 

k>- thermal conductivity of the fluid ; 
NU, Nusselt number, Nu = hD,/k; 

N,, N,,, number of radial and tangential 
grid lines respectively; 

P, pitch distance between rods 
non-dimensionalised with respect to R,, 

(see Fig. 10); 
dP/dz, axial pressure gradient ; 

% axially and peripherally uniform heat 
flux at the rod surface ; 

R, dimensional radius ; 

RC, channel radius ; 
k Reynolds number, Re = PtiD,,/p; 

r,,, rl, r2, r.3, rod radii non-dimensionalised 
with respect to R,; 

r, 0, 2, cylindrical coordinates ; 

*Senior research fellow. 
l-Assistant professor. 

T temperature; 

T*, nondimensional temperature defined by 

equation (5) ; 
;I;., bulk mean temperature of fluid ; __ 
T w1 average temperature of heated 

perimeters ; 

TV,,9 average temperature of central rod ; 
Tw,, T,?, Tw3, average temperatures of 

peripheral rods; 

TV<9 average temperature of channel wall ; 

aT/an, normal gradient temperature; 

Z*, 
axial velocity; 
nondimensional axial velocity defined 

by equation (2); 

u, average velocity ; 
K wall spacing; distance between the 

channel wall and outermost rod ring 
(e.g. in case of 3 rod ring cluster, 

W = 1 - b3) nondimensionalised with 
respect to R,. 

Greek symbols 

6 eccentricity, E = b,/(l -r,); 

49 angle of the symmetry sector; 

P, density of the fluid; 

K viscosity of the fluid ; 
co> angle between the line of intersection 

and the normal to the boundary 
(see Fig. 2). 

Subscripts 

bl 
number of rod ring; 
central rod. 

Other notation 

F{ }, function of. 
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I. IN’I‘ROI~I’C“I‘IO’L 

Ttn: ROD cluster assembly consisting of parallel arra! s 
of fuel rods inside ;I circular channel has become ;I 
principal configuration of the nuclear reactor core. 
The problem of predicting the characteristics of the in- 

line flow of a cooling medium in these configurations I\ 

complicated by its turbulent nature and the complex 
geometry. Although the Ilow is mostly turhulcni the 

laminar llow results pro\ ide upper bound to the rod 
temperatures and lower bound to the Nussclt num- 

bers. The laminar Row results arc also directI> applic- 

able to the low velocity regions that could occur due to 
fault conditions. 

The heat-transfer problem of a How through ;I rod 

cluster assembly is quite difficult to solve anul~ ticall! 
or numerically. The complexities introduced bk non- 
orthogonal intersections of the boundaries with the 

grid lines and the Neumann boundary conditions 
specified at the boundaries make the problem anal?ti- 

tally intractable. Nonetheless. ;I few analytical sol- 
utions are available for constant temperature bound- 
ary condition around the rod surface with simplilied 
geometry such as infinite rod arrays. The v&city and 
temperature solutions for this problem have hccn 

obtained by Sparrow (‘I crl. [ 1. 31. The infinite rod arra! 
problem with specified constant heat Ilus around the 

rod surface has also been solved numericall> b> I)M’!~I 

and Berry [2]. 
The analytical solutions for finite rod bundlcb a~-t’ 

limited to the prediction of fluid flow characteristics 
only. The sin& rod ring cluster problem ha5 been 

analyscd by Min c’f (I/. [4] and they have prehcnteti 
results in the form of velocity profiles and friction 
factor Reynolds number products. Axford 151 has 

solved the problem analytically and has prcsentcd 
some velocity profiles. Zarling [‘6] has further analysed 
the same problem more accurately and procided 
results of / Kc products as a function of a number of 

geometrical parameters. The analytical solutiona to 
the fluid flow problem of multiple rod ring cluster\ 
with arbitrary rod arrangements have been ohtaincd 

by Mottaghian and Wolf [7]. 
It may be noted that. although. the analytical 

solutions in principle arc applied to :I continuum. it has 
been nccessarq in methods used b) some of the aho~e 
authors [ 1.2.41 to restrict satisfaction of the houndar! 

conditions to a discrete number of point\ suitably 

chosen on the boundary. 
A finite difference technique has also been used to 

solve the rod cluster problem. Gunn and Darling [X] 
attempted to calculate fluid flow characteristics in a 

finite 4-rod bundle for the first time. Rehmc [ ‘11 
foollowed the same approach for the solution of a T-rod 
cluster. However. he has reported that the solution for 
bundles with more than scken rods rcsultcd in an 
enormous consumption ofcomputer time and storage. 
Therefore. he proposed 3 subchannel approach based 
on the superposition of the local subcell solutions. 

Although the subchannel analysis simplifies the 

numerical solution procedure it requires prior know- 
ledge of varlou:, characteristics for different subcells 

(0’ 

PI<, I Symmetry sectors da rod cluster assembly. ia) Singly 
connected: (b) Doubly connected. 

:ind mtroduces fictitious quantities such as subchannel 
mixing in the caiculations. 

I!nder the present investigation the problem has 
been solved by a finite difference method using the 

jcctor approach where the smallest symmetry segment 
is considered to bc the characteristic flow area. Such 
sectors for singly and doubly connected assemblies are 
shown in Fig. 1. In this figure an arbitrary number of 

half rods with radii r,(i = I, 3. 3.. .) placed on con- 
centric rings of radii hi around a central rod with radius 
r(, are shown. The present method of solution solves 
the basic equations of momentum and energy over the 
symmetry sector, thereby eliminating the need for any 
empirical input like. for example, information on 
subchannel mixing. The difficulties encountered by 
Rehme [9] in applying overall numerical procedures 
10 rod clusters with more than seven rods have been 
o\,ercome in the present work by incorporating ef- 
ficient treatment of boundary conditions and using a 
fast converging iterative method. The problem of heat 

transfer in the most complex geometry solved by the 
present method required 55 s of CPU time and 15 K 
\torage on a DEC system 10 computer. 

2. FORMCLATION OF THE PROBLEM 
AND METHOD OF SOLUTION 

The fully developed, laminar, incompressible, con- 
stant property axial flow is governed by the following 
dimensionless momentum equation in cylindrical 
coordinates: 
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The dimensionless velocity and the radial coor- 
dinate in the above equation are defined as 

(2) 

R 
r=--. 

RC 

The boundary conditions for the momentum equa- 
tion are: 

(i) u* = 0 on all rod surfaces and on the channel 
wall (see Fig. l), and 

au* 
(ii) - 

ao 
= 0 on the lines of symmetry. 

The fully developed temperature field is governed by 
the dimensionless energy equation in cylindrical coor- 
dinates as 

ia aT* 

i 1 

1 a2T* 4 u 
__ r-_ $--=--- 
r ar ar r2 a02 d,d,,, U ’ 

(4) 

where the dimensionless temperature is given by 

T- ‘&in T*=--. 
@,lk 

(5) 

The dimensionless temperature, T* is defined here 
with respect to the minimum temperature in the flow 
field so that in a thermal entry length situation, for 
example, the minimum temperature, Tmi, will equal the 
uniform inlet temperature when the temperature pro- 
file has just reached the fully-developed condition. 

The boundary conditions for the energy equation 
are : 

(i) axially constant heat flux on the rod surfaces; 
(ii) peripherally uniform and equal heat fluxes on 

all the rods ; 
(iii) zero heat flux on the channel wall and 
(iv) zero heat flux on the lines of symmetry. 
These boundary conditions are no doubt idealis- 

ations; for the heat fluxes are not axially or even 
peripherally uniform, nor are the heat fluxes equal at 
all rods. These idealisations, however, allow prediction 
of the heat-transfer situation by a simple two- 
dimensional Poisson equation (4). The assumption of 
axially uniform heat flux is necessary for consideration 
of the thermally fully-developed profile, whereas per- 
ipheral uniformity of heat flux is considered to ensure 
sectoral symmetry of the temperature profile. The 
assumption of zero heat flux on the channel wall is 
introduced to indicate the fact that heat loss through 
the channel wall is indeed very small compared to the 
heat flux delivered by the rods. 

2.2. Method of solution 
A grid consisting of radial and tangential lines is set 

up over the symmetry sector of the rod cluster 
assembly. Differential equations (1) and (4) are written 
in finite difference (td.) forms and they are solved for 
the interior nodes using the Alternating Direction 
Implicit (ADI) iterative technique [lo]. 

FIG. 2. A typical irregular intersection of the grid lines with 
the boundary. 

For the near-wall nodes the values of the variables at 
the grid intersections with the boundary (see, for 
example, points 0 and 4 as shown in Fig. 2) are 
involved in the finite difference equations. Since the 
velocities at the solid walls are known, the f.d. equa- 
tions for velocity are solved only at the interior nodes. 
However, in the heat-transfer problem for which 
Neumann boundary conditions are specified at the 
boundaries, it is necessary to solve for the boundary 
point temperatures separately in addition to the 
interior grid nodes. The main task then is to express the 
Neumann condition in a finite difference form. The 
method for treating the boundary condition is given by 
Greenspan [ 1 l] ; in the present work a variant of his 
method is used [15]. 

2.3. Accuracy and measure of convergence 
The numerical accuracy of the solution has been 

tested by confirming the grid independence of the 
solutions. For example, for the symmetry sector of a 

FIG. 3. Effect of the grid size on the velocity and temperature 
profiles on the symmetry line. 
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X-rod cluster, three different mesh sizes were used. 
Figure 3 shows the predicted velocity and temperature 
profiles at 0 = 30” (i.e. the upper line of symmetry). 
Included in the figure are also the overall characteris- 

tics / IZe and NIP. As can be seen that for the grid 

dispositions the variance in the predictions is neglig- 
ible. From the calculations it was found that for 11 
x 38 grid the amperage error in [!:I{ value as compared to 

30 x 2X grid was O.?‘,, and the average error in T’./ 
was 0.5”,, (percentage error was based on the local 
value). 

The con\jergencc of the solution was tested by 
fractional change as well as the residual source crite- 

rion : the latter is estimated by calculating the imbal- 
ancc in the f.d. equation for the interior nodes. This, 

unlike the former. is insensitive to the number of grid 
lines. 

3. RESULT .&ND DISCUSSION 

3.1. Ifttfwluctiof~ 

The fluid flow (i.e. product .f“Re) and the heat- 
transfer (i.e. Nlr) characteristics for a fully developed 
laminar flow depend only on the geometrical para- 

meters when the secondary flows are absent. Such 
being the present case. the functional dependence of 

7 Rc is written as: 

where 

f ,Re = F(r,,r;,h,. Mi.4). (6) 

Using the Reynolds number based on the hydraulic 
diameter, D,, and the definition of dimensionless 

velocity from equation (2). the ,f’. Re product is 

obtained as 

f.Rc~=;~$. (8) 

(9) 

where 

Iih _ J‘ju*rdrdO 

I‘! r dr d0 

Case 2. P/D = 1.6 

P/D = 2.0 

The average heat-transfer coefficient it is defined as 

Hence the Nusselt number based on D,, using ~hc 
definition of dimensionless temperature given h> equ:i- 

tion (5) can be written as 

Ii.‘) 

where ds is the incremental length along the solid 

heated boundaries. The integrals in equations (8). ( 12) 
and (13) were evaluated by Simpson’s rule. 

The functional dependence of NLI on the geometrical 

parameters is presented as 

Nu = F(r,.r,,h,. U’. 4;. 

3.2. Confirmatory results 
In order to check the validity of the present method 

and the computer program. the following cases for 
which heat-transfer solutions are available were sol- 

ved. 
Case 1. Laminar fully developed flow heat transfer- 

in an annulus with radius ratio, R,/R, = 0.2 with inner 
cylinder at uniform heat flux and outer wall insulated 

cw 
Case 2. Laminar fully developed flow heat transfcl- 

in a uniform heat flux equilateral triangular infinite 

rod array with P/D = 1.6 and 2.0 131. 
The results for the above cases are presented in 

Table 1. The results are in excellent agreement with the 

available solutions. 

Table I. Confirmatory results 
___. _____-. _ _~ .~ ~. 

Nusselt number 

Known 
solution 

.__-- 

8.499 
(Analytical) 

Present Percentage 
solution difference 

8.47 1 0.33 

Remarks 

Grid lines 
intersect 
orthogonally 
with the 
boundary 

12.05 
(Numerical) 

15.26 
(Numerical) 

11.95 0.83 

15.11 0.98 

Non-orthogonal 
intersection 
with the 
boundary 
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Table 2. Predictions for single rod ring clusters 

939 

Location 
No. 

Sr of Rod 4 Grid *naf’Re 
of T,,, 

This 
No. rods radii deg b, dh N, x N,, [13] work u,,JU 7; NM T,,,/7; dfg r 

1 5 0.20 45.0 0.720 0.800 
2 5 0.20 45.0 0.640 0.800 
3 5 0.25 45.0 0.675 0.611 
4 5 0.25 45.0 0.600 0.611 
5 I 0.20 30.0 0.720 0.600 
6 I 0.20 30.0 0.640 0.600 
7 I 0.25 30.0 0.675 0.409 
8 7 0.25 30.0 0.600 0.409 
9 9 0.20 22.5 0.720 0.451 

10 9 0.20 22.5 0.640 0.457 
11 9 0.25 22.5 0.675 0.269 
12 11 0.20 18.0 0.720 0.350 

14 x 17 15.89 15.97 2.096 0.093 3.664 7.61 0.0 0.92 
16x20 19.83 19.89 2.251 0.147 4.471 3.05 0.0 0.20 
18 x 19 14.75 14.98 2.371 0.225 2.353 4.69 0.0 0.93 
19x23 17.14 17.28 2.493 0.320 1.807 4.50 0.0 0.25 
10x17 17.43 17.46 2.080 0.245 3.175 4.62 0.0 0.92 
12 x 12 24.31 24.31 2.071 0.234 5.659 2.50 0.0 0.20 
15 x 19 19.20 19.25 2.098 0.415 3.069 2.39 0.0 0.25 
16x23 19.52 19.56 2.676 0.747 0.461 7.70 0.0 0.25 
13 x 19 16.15 16.19 2.564 0.769 1.023 3.86 0.0 0.92 
12x20 22.50 22.76 2.036 0.381 3.552 2.75 17.3 0.55 
23 x 22 15.12 15.45 2.321 1.863 1.068 2.22 0.0 0.93 
11 x19 11.12 11.22 2.788 1.834 0.229 5.64 0.0 0.92 

I I I I I 
Analytical solutions of Mln eta/. 141 ’ 

I 

26----- Anolyttcol solutions of Zarllng Cl31 

Present results 
24 -0 ro =r, =0.2;b, =0.72 

,, ro=r, =0.25;b,-0.675 

20 -A ro =r, -0.25;b =0.6 

6- Equivalent number of rods 

6 I I I I I I 

II 9 7 5 
T/IO s/8 n/6 H/4 

Angle of the symmetry sector. 4 

FIG. 4. .f’ Re variation with number of rods in a single rod ring cluster. 

I 1 1 I 

Present results I I I 

0 ro = r, =0.2; b,=0.72(e= 0.9) 

, _X r. =r, =0.2; b,=0.64k=0.8) 

0 ro = r, =0.25; b,=0.675(c=0.9) 

6-A ro=r, =0.25;b,=0.6k=0.8) 

----Curve through the data 
,----, 

-. 
5- 0’ 

,,c 
‘\ 

/’ 
4- /’ 

,d 

I I I I I I , I I 
II 9 7 5 

H/IO H/8 7r/6 H/4 
Angle of the symmetry sector, 4 

FIG. 5. Nu variation with number of rods in a single rod ring cluster. 
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3.3. Single rod ring cluster results 

The predictions of,f Re as a function of the angle of 
symmetry sector d, (or the equivalent number of rods 
in the assembly) are plotted in Fig. 4 with rod radii and 

eccentricity c defined by Min et al. [4] as parameters. 
The solutions obtained by Min er ~1. and Zarling [ 131 
are shown for comparison. Results compare well with 

Zarling’s data (see also Table 2). Substantial deviation 
is observed in Min et d’s data for some geometries 

which could be due to the point matching technique 

used by them for satisfying the boundary conditions as 

pointed out by Zarling [ 131. 
The NU variation is shown in Fig. 5. The curves 

exhibit a similar trend as that of / Rc variation with 

the number of rods. The curves for I’,) = r1 = 0.2: h 
= 0.72 and I’~) = r, = 0.25: h = 0.675 merge together 

beyond seven rods. This does not necessarily mean 
that the heat-transfer coefficients in the two cases are 

equal, because of the complicated geometrical factor. 
II,, involved in the definition ofdimensionless tempera- 

ture. The same is also the reason for unusually small 
magnitudes of Nu for certain geometrical conditions. 

The effect of various geometrical parameters. VIZ. the 

wall spacing M/. C$ and the rod ring radii for lo-rod 
cluster with two rod rings is discussed below. 

&fject ?f’~~111 spacing W. The wall spacing W was 
varied by varying h, and hz (hz = h3) such that (h2 
-b,) was equal to 0.3. This configuration was chosen 
to facilitate comparison of the predictions with the 

calculations of Mottaghian and Wolf 171. The effect of 
Won various characteristics is shown in Figs, 6 8. The 

1 Re results presented in Fig. 6 are compared with 
Mottaghian and Wolf’s [7J results and found to be in 
good agreement. The 1’. Re product initially increases 

with W. reaches a maximum at W = 0.35 and then 

decreases continuously. NU also varies in the same 
fashion as shown in the figure but its behaviour is more 
pcakish than that of f’. Re and its maximum occurs at 

W = 0.3. Average temperature of the rod surfaces. 
bulk mean temperature and their difference pass 
through a sharp minimum at LV = 0.3 as seen from 
Fig. 7. The variation of average rod temperature for 

each rod and average channel wall temperature with 
W is plotted in Fig. 8. The central rod temperature is 
initially constant and increases sharply for U’ -> O..: 

because of the influence of peripheral rods. The 

peripheral rod temperatures initially decrease as the 
influence of the channel wall reduces, pass through 

minima at L+. = 0.3 and increase beyond II. = 0 3 due 

to the influence of the central rod and their influence 
on each other as they come closer. The channel wall 

temperature decreases as I+’ increases and remains at 
nearly zero (which, incidentally implies that the chan- 

nel wall temperature equals the minimum fluid tem- 

perature) beyond LV = 0.3. indicating that there IS no 
influence of rod temperatures on the channel wali. 

0.5 

0.4 

0.3 

T+ 

0.2 

0.1 

0 0.1 0.2 0.3 0.4 0.5 
W 

FIG. 7. Hulk mean temperature ( 7; I, a\ot-age temperature of 
the rod surfaces (7::) and their difference as a function of wall 

spacing ( l4.i. 

5ooj; Anolytlcal solut!ons for f Re of 

-I6 

-I4 

-- I2 

-IO g 

-8 

-6 

-4 

-2 

08° 
W 

FIG. 6. / Re and Nu as a function of wall spacing ( W). 

T* 

0.5 

0.4 

0.3 

02 

0. I 

0 0.1 0.2 0.3 0.4 

w 

FIG. X. Average rod and channel wall temperatures as a 
function of wall spacing (WI 
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The change in characteristics at W = 0.3 is attri- 

buted to the change in velocity profiles between the 
central rod and the peripheral rods and between the 
peripheral rods and the channel wall. The temperature 
profiles are of course governed by the velocity profiles. 
Velocity contours for three geometries with W = 0.2, 
0.3 and 0.35 are shown in Fig. 9. For W = 0.2, the high 
velocity region lies in between the central rod and the 
first rod ring. The velocities are quite low in the vicinity 
of the second rod ring and the channel wall. This 

(a) 

(bi 

00-- 3 --00 0 000 

_‘- -0 00 do 

FIG. 9. Constant velocity (u/u^) contour lines for 19-rod 
cluster. r0 = rl = r2 = r3 = 0.05; b, = b,; b,- h, = 0.3: (a) 

@‘=0.2;(b)W=0.3;(c)W=0.35. 

results in relatively low temperature at the central rod 
and high temperatures at the peripheral rods and the 
channel wall. At W = 0.3, the high velocity zone 
spreads well beyond the second rod ring providing 
relatively substantial mass flow rates near all the solid 
walls. This leads to a comparatively favourable heat- 
transfer situation with low temperatures prevailing at 
all the surfaces. At W = 0.35 the high velocity zone 
passes beyond the second rod ring having a maximum 
cooling effect on the channel wall resulting in low 
channel wall temperature and high rod temperatures. 
The above discussion explains the sensitivity of the 
wall temperatures to the parameter W. It should be 
noted, however, that average wall temperatures have 
been plotted in Fig. 8 and the unusual sharpness in the 
curves at W = 0.3 is incidental. 

E$ect of rod radii for triangular array of rods. In 
order to facilitate comparison with Mottaghian and 
Wolf’s [7] results a geometry was chosen such that 
distance P between the centres of rods 1,2 and 3 shown 
in Fig. 10 was equal and thus forming a triangular 
array. The values of b,, b2, b3 and P are same as those 
chosen by Mottaghian and Wolf. 

In Fig. 10, on the X-axis are plotted the values of 
P/D instead of l?. This is done to correspond with 
the manner of presentation adopted by Mottaghian 

P/D 

FIG. 10. f’. Rc and Nu variation with pitch-to-diameter ratio 
(P/D) in a 19-rod cluster with triangular array. 

’ I ’ I ’ -- 

-20 

- I8 

t 

d 
20 // 8 

/ / 
.’ 

rO= 7, = r,=rs=0.05 
6 

IO 
t 

-Anolytml solutions for 
f.Re of Mottoghian and Wolf 

4 

Present results 
o f.Re 

--- Curve thr?,“,“h the data 

-2 

0 I 1 0.4 0.5 0.6 0.7 0.80 
bz 

FIG. 11. f. Re and Nu variation with the radial displacement 
of the second rod ring with radius (bJ. 

and Wolf. The f.Re results compare well with their 
solutions. f. Re and Nu monotonically increase with 
P/D. Similar variation is observed for an infinite 
triangular rod array as seen from the analytical 
solutions for f. Re of Sparrow and Loeffler [l] and 
from the predictions for Nu of Dwyer and Berry [3]. 

E$ect of bz. The effect of changing the second rod 
ring radius b2 by keeping b, and b3 fixed is presented in 
Fig. 11. The solutions (which have been tested for grid 
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Table 3. Predictions for multiple rod ring clusters 

NO. 
Sr 01 Rod 

No. rods radii ri,, 

3 I 9 0.0500 

4 19 0.0500 

5 I9 0.0500 

6 19 0.1000 

7 19 0.0667 

8 I9 0.0500 

9 I9 o.C!400 

IO 19 0.0500 

11 I9 0.0500 

I? 19 0.0500 

0.600 
30.0 0.900 

O.‘)(X) 

0.500 
30.0 0.400 

0.X(H) 

0.400 
30.0 0.700 

0.7(N) 

O.?jO 
30.0 0.650 

O.hF(i 

0.300 
30.1) 0.600 

0.600 

0.400 
30.0 0.693 

0.X(X1 

0.400 
30.0 0.693 

0.X(X) 

0.400 
30.0 0.693 

0.800 
0.400 

30.0 0.693 
O.XDo 

0.100 
30.0 0.600 

0.800 

0.400 
30.0 0.500 

0.81H 
11.400 

30.0 0.400 
(LX00 

0.977 

0077 

0.1)77 

0.077 

0.977 

0.55r) 

0.808 

0.977 

i.fO? 

0.977 

0.977 

11,977 

19 * ‘0 

19 x Ilh 

I’) Y ‘6 

I9 x 10 

I9 x 26 

73 * 28 

/ 
Anal 

PI 

17.0 

x0 

20.x 

34.0 

36.X 

30 0 

inde~nd~n~) agree fairly well with ~ottaghiat~ and sented in k igs. 1_ ’ and 1.3. Rod radii arc chosen iis ii 

Wolf’s [7] results for hz > 0.6, however. for h, < 0.6 parameter. The j’. Re predictions are compared with 

the agreement with the analytical solutions ib not the analytical solutions of Mottaghian and Wolf 171. 

entirely satisfactory. For the same flow area. f’. lir The analytical solutions deviate substantially from the 

increases with increasing ring radius h,: reaches a present results as the rod radii and numbor ot‘ rcd~ 

maximum value at hZ = 0.63 and then decreases with increase. The solutions obtained by the present me- 

further increase in hz. Therefore. from a pressure drop thod for 2X rod cluster with rii -: ri :- r1 :- ,‘; == tl.OX 

point of view it seems to be more advantageous to differ by about ?O”,, in spite of the grid indcpe~ldelll 

place additional rods into the first or third rod ring solution obtained by increasing the grid lines from 11 
than to constitute a second rod ring. x 28 to 20 x 28 (see Fig. 3). 

The predicted Nu variation is also plotted in Fig. 1 I. 
Nu gradually increases with decrease in hz, reaches a 
maximum value at hz = 0.66 and then decreases 

steeply with further decrease in hZ, Hence, from the 
point of view of heat transfer and pressure drop 
together, additional rods in the outermost ring seems 
to be optimum for the specified case. 

Since (i) the results agree well with the analytical 
solutions for single rod ring array and for the cases 
shown in Figs. 6, 10, 11. (ii) the results arc grid 
independent, and (iii) the boutldary condition is 
satistied at a sufficiently large number of points. the 
present solutions are believed to be correct. 

The curves for NLI are presented in Fig. I?. Nusselt 
number decreases with the increase in rod diameters: 
however, the variation of,/ Re and NH are difficult to 
explain because of the complicated geometrical factor. 
I),, involved in the definitions of i Re and T”. 

The effect of the angle of symmetry sector 4 (or the 
equivalent number of rods in the assembly) is pre- 

IXX(l 

41 23 

38.66 

29.45 

34.01 

36 x0 

3. IO 

37.31 

0.17s 

&I’;3 

0.030 

O.O’fl 

0.1 I’) 

0.7 I .i 

0.037 

0.033 

0.0’9 

O.OOR 

0. IO 1 

0. I OS 
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Table 3--continued 
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Location 

No. h, J’.Re or Lx 
Sr of Rod I$ b, Grid Anal. This 0 

No. rods radii dcg h, dh N, x N,, [‘I work U,.& 7;* NU Tm,,lTf deg r 

13 19 

14 19-i. 

15 19 

16 19t 

17 10 

I8 28 

19 37 

20 46 

21 10 

22 28 

23 37 

0.0500 

0.0500 

0.0800 

0.0800 

0.0500 

0.0500 

0.0500 

0.0500 

0.0800 

0.0800 

0.0800 

0.400 
30.0 0.800 

0.800 

0.400 
30.0 0.800 

0.800 

0.400 
30.0 0.800 

0.800 

0.400 
30.0 0.800 

0.800 

0.400 
60.0 0.800 

0.800 

0.400 
20.0 0.800 

0.800 

0.400 
15.0 0.800 

0.800 

0.400 
12.0 0.800 

0.800 

0.400 
60.0 0.800 

0.800 

0.400 
20.0 0.800 

0.800 

0.400 
15.0 0.800 

0.800 

0.977 19x26 31.0 31.57 1.879 

0.977 20x26 31.48 1.915 

0.697 15x28 25.0 26.75 2.056 

0.697 

1.300 

0.775 

0.637 

0.536 

1.040 

0.507 

0.385 

16x28 

23x26 

21 x26 

16x26 

13x26 

20x28 

20x28 

16x28 

26.0 

30.0 

25.5 

21.0 

22.5 

20.8 

14.7 

26.75 

26.07 

31.73 

27.81 

22.49 

22.40 

24.79 

17.94 

2.150 

1.937 

1.962 

2.102 

2.171 

2.037 

2.264 

2.293 

0.040 

0.040 

0.094 

0.097 

0.028 

0.116 

0.25 1 

0.440 

0.051 

0.248 

0.789 

tDoubly connected. 

3.6. Comment on data presented in the Tables 2 and 3 

Tables 2 and 3 present fluid flow and heat-transfer 
characteristics of single rod ring and multiple rod ring 
clusters respectively for 35 different configurations (in 
each case the grid was chosen in such a manner that the 
number of intersections at which the boundary con- 
ditions were satisfied were more than 70). The ratios 
u,,,&_i for these configurations vary between 1.6 and 
2.8 which are normally found for noncircular ducts. 
The maximum temperature to bulk mean temperature 
ratios vary between 2.2 and 7.7. As expected, the 
maximum temperature always occurs on the rod 
surface where the gap between two solid walls is 
smallest. The tables also provide comparison of the 
presently predicted and previously analytically calcu- 
lated results for .f. Re. 

4. CONCLUSIONS 

The following are the conclusions of the present 
paper: 

14.45 

14.43 

8.822 

8.757 

14.73 

9.861 

5.836 

3.524 

8.956 

4.421 

1.734 

3.95 0.0 0.85 

3.89 15.0 0.85 

3.59 0.0 0.88 

3.51 15.0 0.88 

4.48 0.0 0.85 

2.73 20.0 0.85 

2.40 15.0 0.85 

2.33 12.0 0.85 

4.53 0.0 0.88 

3.30 0.0 0.88 

2.84 15.0 0.88 

(1) Heat transfer results for fully developed laminar 
flow in rod cluster assemblies of up to 46 rods have 
been obtained for the first time using the sector 

approach. Both singly, as well as doubly connected 

sectors have been considered. 
(2) The predicted f.Re results are in excellent 

agreement with the analytical solutions for the ma- 
jority of the cases. As the proximity between the rods 
increases the agreement between the present pre- 
diction and the analytical solutions of Mottaghian and 
Wolf [7] is poor. This conclusion points to the manner 
in which Mottaghian and Wolf have divided the region 

for the superposed solution and subsequently treated 
the boundary conditions. The present numerical sol- 
utions are, however, believed to be accurate in all 
cases. 

(3) The predicted heat-transfer characteristics have 
shown plausible trends. The predictions have also 
brought out some unique features of the flow. For 
example, for a 19-rod cluster, it has been found that 
when W = 0.3, the characteristics exhibit a marked 
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Equivalent number of rods 

I I I 
46 28 19 IO 

T/15 i& lr/9 a/6 n/3 
Angle of the symmetry sector, 9 

FIG. 12. f. Re variation with number of rods in a two rod ring 
cluster. 

b,= 0.4,6,=0.8,b,=O.8 I 

,* _ 0 Present resu Its 

--- Curve through the data P___---< 
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2 I’ 
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.' 

4- _/+ =O.OS,fi’ 
,’ 

2- _iT- 
M’ 

0 Equivalent number of rods 
I I I 

46 37 28 19 IO 

H/15 V/l2 lT/9 lr/6 n/3 
Angle of the symmetry sector, 4 

FIG. 13. Nu variation with number of rods in a two rod ring 
cluster. 

change. Similarly it is also noticed that it is beneficial 
from both the pressure-drop and heat-transfer point of 

view to have only two rod rings in preference to three 
rod rings for 19”rod clusters. 

(4) Fluid Aow and heat-transfer characteristics over 

complex domains presented by symmetry sectors of 

rod clusters have been efficiently predicted with CPU 
times and storage not exceeding 1 min and 15 K on 

DEC system 10 computer. 
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PREDICTION NUMERIQUE DES CARACTERISTIQUES DE TRANSFERT 
THERMIQUE DUN ECOULEMENT LAMINAIRE PLEINEMENT DEVELOPPE 

DANS UN CANAL CIRCULAIRE CONTENANT UNE GRAPPE DE TUBES 

R&sum&-On presente les resultats de calcul pour un tcoulement laminaire pleinement developpe dans des 
assemblages de grappes de tubes. Le problZme est resolu par une mithode de differences finies utitisant une 
approche sectorielle oh le ptus petit segment de symetrie de la grappe est consider& comme la caract~rist~que 
de la section de passage, La perte de charge est rapport&e au nombre de Reynolds de frottement et eIIe est 
comparee aux rtsultats don&s dans la bibliographic. Les nombres de Nusselt sont presentis pour plusieurs 
configurations. Les resultats sont exprimts en fonction de l’espacement des parois du canal, du deplacement 

radial des anneaux des tubes, du nombre de tubes dans I’assemblage et du diametre des tubes. 
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DIE NUMERISCHE BESTIMMUNG DER 
WARMEUBERTRAGUNGSCHARAKTERISTIK EINER VOLL AUSGEBILDETEN 
LAMINARSTRGMUNG DURCH EINEN RUNDEN KANAL MIT STABBUNDELN 

Z~f~~-Die~r Bericht beschreibt die Ergebnisse der Berechnung einer vol ausgebildeten 
Lamin~str~mung zwischen Stabb~ndeianordnung~n. Die Aufgabe wird durch eine finite Differenzen- 
methode gel&t, bei der eine abschnittsweise Naherung angewandt wird, wobei die kleinste Symmetrieeinbeit 
des Biindels als kleinstes charakteristisches Stromungsgebiet betrachtet wird. Die Druckabfallcharakteris- 
tika werden in Abhlngigkeit von den Produkten aus ReibungskoeRIzient und Reynolds-Zahl dargestellt 
und werden mit den in der Literatur verfiigbaren Werten verglichen. Die Nusselt-Zahlen werden fur 
verschiedene Anordnungen aufgefiihrt. Die Ergebnisse werden ausgedriickt in Abhlngigkeit des Kanaldu- 
rchmessers, der radialen Versetzung der St&be, der Anzahl der Stiibe innerhalb des Biindels und des 

Durchmessers der St&e. 
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YMCJIEHHblZ;j PACHET XAPAKTEPMCTMK TEI’IJIOO6MEHA llPM IlOJlHOCTbK) 
PA3BMTOM JlAMMHAPHOM TEqEHMM B KPYI-JIblX KAHAJIAX, COfiEPxAIIlMX 

IIYYKM CTEPXHEH 

~~O~~H~- B CTaTbe n~~CTa~neHb1 pe3yJlbTaTbI p2iCWTOB JlJiri IIOnHOCTbIO pa3BHTOrO JlaMH- 

HapHOrO 06TeKaH3Sn nyYKOi3 CTep~H&i. 3aLIaYa pelUaeTCK MeTOLlOM KOHeYHblX pa3HOCTd flyTeM 

pas6wemifl BCerO KaHWIa Ha CeKTOPbI,rDe TOflbKO OTpe3OK HallMeHbiJJeR CMMMCTPAH IIyYKa H~~Ho 

npmmaTb 3axapaKTepHyko 06nacTbreseemt.Hepena.n nameiim sbtpaxaercn Yepes npokisseaeekie 

KO3@&iUHeHTa TpeHWl Ha YHCIIO PekHOJlbLlCa H CpaBHHBaeTCfl C OIly6JlI4KOBaHHbIMH LLaHHblMH. 

~nflHeCKOnbKwXKOH~wrypaUllenpwBOasTCff 3HaYeHH~YlrCJRlkiyCCenbTa.Pe3yJlbTaTbInpencTaBfleHbr 

KaK~yHKUWII paCCTOaHtfaMe~~yCTeHKaMWKaHana,panwaflbHbIXCMe~eHBii nyYKOB.Y~CnaCTep~He~ 

B ~YYKe~~~aMeTpacTep~He~. 


