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Abstract—This paper presents the results of computations for a fully developed laminar flow in rod cluster

assemblies. The problem is solved by a finite difference method using a sector approach, where only the

smallest symmetry segment of the cluster is considered to be the characteristic flow area. The pressure drop

characteristics are reported in terms of friction factor Reynolds number products and are compared with

those available in the literature. Nusselt numbers are presented for several configurations. The results are

expressed as functions of channel wall spacing, radial displacement of the rod rings, the number of rods in the
assembly and rod diameters.

temperature ;

nondimensional temperature defined by
equation (5);

T,,  bulk mean temperature of fluid;

N average temperature of heated
perimeters ;

NOMENCLATURE T,
by, b,, b3, radii of the peripheral rod T*
rings nondimensionalised with
respect to R; !
D, rod diameter ; [
D,, hydraulic diameter based on wetted

»

4 x flow area T, average temperature of central rod;
perimeter, D, = ——————; Tw, Ty T,,, average temperatures of

wetted perimeter peripheral rods;

T,., average temperature of channel wall;
4 % flow area 0T/on, normal gradient temperature;
; u, axial velocity ;
u*, ~ nondimensional axial velocity defined
dy, dy, hydraulic diameter parameters by equation (2);
nondimensionalised with respect 7] average velocity ;
toR,; W,  wall spacing; distance between the

D), hydraulic diameter based on heated

erimeter, D), = ——————;
P "' heated perimeter

R
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1, Fanning friction factor; channel wall and outermost rod ring
h, heat-transfer coefficient ; (e.g. in case of 3 rod ring cluster,

hy, hs,d, e, directional distances (see Fig. 2); W = 1—b;) nondimensionalised with
k, thermal conductivity of the fluid; respect to R...

Nu, Nusselt number, Nu = hD,/k;

N,, N,, number of radial and tangential
grid lines respectively;

P, pitch distance between rods
non-dimensionalised with respect to R,
(see Fig. 10);

dP/dz, axial pressure gradient;

4, axially and peripherally uniform heat
flux at the rod surface;

R, dimensional radius;

R.,  channel radius;

Re,  Reynolds number, Re = puD,/u;

ro.r1,F3, r3, rod radii non-dimensionalised
with respect to R ;

r,0,z, cylindrical coordinates ;
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Greek symbols

g, eccentricity, ¢ = b /(1 —rp);

¢, angle of the symmetry sector ;

P, density of the fluid;

M viscosity of the fluid ;

v, angle between the line of intersection
and the normal to the boundary
(see Fig. 2).

Subscripts
i number of rod ring;
0, central rod.

Other notation

F{}, function of.
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1. INTRODUCTION

THE rROD cluster assembly consisting of parallel arrays
of fuel rods inside a circular channel has become &
principal configuration of the nuclear reactor corc.
The problem of predicting the characteristics of the in-
line flow of a cooling medium in these configurations is
complicated by its turbulent nature and the complex
geometry. Although the flow is mostly turbulent the
laminar Now results provide upper bound to the rod
temperatures and lower bound to the Nusselt num-
bers. The laminar flow results are also directly applic-
able to the low velocity regions that could occur due to
fault conditions.

The heat-transfer problem of a flow through a rod
cluster assembly is quite difficult to solve analytically
or numerically. The complexities introduced by non-
orthogonal intersections of the boundaries with the
grid lines and the Neumann boundary conditions
specified at the boundaries make the problem analyti-
cally intractable. Nonetheless, a few analytical sol-
utions are available for constant temperature bound-
ary condition around the rod surface with simplified
geometry such as infinite rod arrays. The velocity and
temperature solutions for this problem have been
obtained by Sparrow et al. [ 1, 2]. The infinite rod array
problem with specified constant heat flux around the
rod surface has also been solved numerically by Dwyer
and Berry {3].

The analytical solutions for finite rod bundles are
limited to the prediction of fluid flow characteristics
only. The single rod ring cluster problem has been
analysed by Min ¢t al. [4] and they have presented
results in the form of velocity profiles and friction
factor Reynolds number products. Axford [5] has
solved the problem analytically and has presented
some velocity profiles. Zarling [6] has further analysed
the same problem more accurately and provided
results of /- Re products as a function of a number of
geometrical parameters. The analytical solutions to
the fluid flow problem of multiple rod ring clusters
with arbitrary rod arrangements have been obtained
by Mottaghian and Wolf [7].

[t may be noted that, although. the analytical
solutions in principle arc applied to a continuum. it has
been necessary in methods used by some of the above
authors [1,2, 4] to restrict satisfaction of the boundary
conditions to a discrete number of points suitably
chosen on the boundary.

A finite difference technique has also been used to
solve the rod cluster problem. Gunn and Darling 8]
attempted to calculate fluid flow characteristics in a
finite 4-rod bundle for the first time. Rehme [9]
followed the same approach for the solution of a 7-rod
cluster. However. he has reported that the solution for
bundles with more than seven rods resulted in an
enormous consumption of computer time and storage.
Therefore. he proposed a subchannel approach based
on the superposition of the local subcell solutions.
Although the subchannel analysis simplifies the
numerical solution procedure it requires prior know-
ledge of various characteristics for different subcells
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Fiao 1. Symmetry sectors of a rod cluster assembly. (a) Singly
connected: (b) Doubly connected.

and introduces fictitious quantities such as subchannel
mixing in the calculations.

Under the present investigation the problem has
been solved by a finite difference method using the
sector approach where the smallest symmetry segment
is considered to be the characteristic flow area. Such
sectors for singly and doubly connected assemblies are
shown in Fig. 1. In this figure an arbitrary number of
half rods with radii r{(i = 1,2.3...) placed on con-
centricrings of radii b; around a central rod with radius
1o are shown. The present method of solution solves
the basic equations of momentum and energy over the
symmetry sector, thereby eliminating the need for any
empirical input like, for example, information on
subchannel mixing. The difficulties encountered by
Rehme [9] in applying overall numerical procedures
10 rod clusters with more than seven rods have been
overcome in the present work by incorporating ef-
ficient treatment of boundary conditions and using a
fast converging iterative method. The problem of heat
transfer in the most complex geometry solved by the
present method required 55s of CPU time and 15K
storage on a DEC system 10 computer.

2. FORMULATION OF THE PROBLEM
AND METHOD OF SOLUTION
2.1. The mathematical problem
The fully developed, laminar, incompressible, con-
stant property axial flow is governed by the following
dimensionless momentum equation in cylindrical
coordinates:

1‘(,” b+ S (1)
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The dimensionless velocity and the radial coor-
dinate in the above equation are defined as

we——— @)
l <_d_P)R2
u dz) ¢
R
r =E-. (3)

The boundary conditions for the momentum equa-
tion are:

(i) u* = 0 on all rod surfaces and on the channel
wall (see Fig. 1), and

. ou* .
(i) 0 = 0 on the lines of symmetry.

The fully developed temperature field is governed by
the dimensionless energy equation in cylindrical coor-
dinates as

10y 0T* N 1 3°T* 4 u )
—_—— ) — —_——— I —— — ,
ror ( or ) rr 90*  dyd, 0
where the dimensionless temperature is given by
T- Tmin
e — (5)
qDi/k

The dimensionless temperature, T* is defined here
with respect to the minimum temperature in the flow
field so that in a thermal entry length situation, for
example, the minimum temperature, T,,;, willequal the
uniform inlet temperature when the temperature pro-
file has just reached the fully-developed condition.

The boundary conditions for the energy equation
are:

(i) axially constant heat flux on the rod surfaces;
(i) peripherally uniform and equal heat fluxes on
all the rods;

(iii) zero heat flux on the channel wall and

(iv) zero heat flux on the lines of symmetry.

These boundary conditions are no doubt idealis-
ations; for the heat fluxes are not axially or even
peripherally uniform, nor are the heat fluxes equal at
all rods. These idealisations, however, allow prediction
of the heat-transfer situation by a simple two-
dimensional Poisson equation (4). The assumption of
axially uniform heat flux is necessary for consideration
of the thermally fully-developed profile, whereas per-
ipheral uniformity of heat flux is considered to ensure
sectoral symmetry of the temperature profile. The
assumption of zero heat flux on the channel wall is
introduced to indicate the fact that heat loss through
the channel wall is indeed very small compared to the
heat flux delivered by the rods.

2.2. Method of solution

A grid consisting of radial and tangential lines is set
up over the symmetry sector of the rod cluster
assembly. Differential equations (1) and (4) are written
in finite difference (f.d.) forms and they are solved for
the interior nodes using the Alternating Direction
Implicit (ADI) iterative technique [10].
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F1G. 2. A typical irregular intersection of the grid lines with
the boundary.

For the near-wall nodes the values of the variables at
the grid intersections with the boundary (see, for
example, points 0 and 4 as shown in Fig. 2) are
involved in the finite difference equations. Since the
velocities at the solid walls are known, the f.d. equa-
tions for velocity are solved only at the interior nodes.
However, in the heat-transfer problem for which
Neumann boundary conditions are specified at the
boundaries, it is necessary to solve for the boundary
point temperatures separately in addition to the
interior grid nodes. The main task then is to express the
Neumann condition in a finite difference form. The
method for treating the boundary condition is given by
Greenspan [11]; in the present work a variant of his
method is used [15].

2.3. Accuracy and measure of convergence

The numerical accuracy of the solution has been
tested by confirming the grid independence of the
solutions. For example, for the symmetry sector of a
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—_—/i Gatde-zo': ~—=T/Tat §220°
ri
Symbol Ngx Ng fxRe Nu
O 20x28 24x79 4x412
x I5x28 24x83 4x412
o Il x 28 24x77 4x406
ot r -
20+ —{4.0
L 4
15— 5 s 3.0
- E
1> ©
< [ 2 °© o] -1 I
> - e e s ~
o2 o Jz.o*'
— o o o
o P @
- o 2 sﬁ
© a al 2
0.5% > & YO0
o o g

o U 0.2

F1G. 3. Effect of the grid size on the velocity and temperature
profiles on the symmetry line.
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28-rod cluster, three different mesh sizes were used.
Figure 3 shows the predicted velocity and temperature
profiles at 0 = 20° (i.e. the upper line of symmetry).
Included in the figure are also the overall characteris-
tics - Re and Nu. As can be seen that for the grid
dispositions the variance in the predictions is neglig-
ible. From the calculations it was found that for 11
x 28 grid the average error in u/u value as compared to
20 x 28 grid was 0.27, and the average error in T/
was 0.5°, (percentage error was based on the local
value).

The convergence of the solution was tested by
fractional change as well as the residual source crite-
rion: the latter is estimated by calculating the imbal-
ance in the f.d. equation for the interior nodes. This,
unlike the former. is insensitive to the number of grid
lines.

3. RESULT AND DISCUSSION

3.1, Introduction

The fluid flow (i.e. product f-Re) and the heat-
transfer (i.e. Nu) characteristics for a fully developed
laminar flow depend only on the geometrical para-
meters when the secondary flows are absent. Such
being the present case. the functional dependence of
1+ Re s written as:

[ Re = Flrg.rb. W.¢!. ©)
where
dpP
=gz P
e "

Using the Reynolds number based on the hydraulic
diameter, D, and the definition of dimensionless
velocity from equation (2). the f-Re product is
obtained as

f-Re = "_’*. (8)

where
jj w¥r dr do
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The average heat-transfer coefficient /1 is defined as

e (1
T.~T

Hence the Nusselt number based on D, using the
definition of dimensionless temperature given by equu-
tion (5) can be written as

Nu=-— — | (i
TX— T
where
o W THutrdrdo .
Y t e
! ffu*rdrdeo l
and
. j T.xds )
T* fas {13
s

where ds is the incremental length along the solid
heated boundaries. The integrals in equations (8), (12}
and (13) were evaluated by Simpson’s rule.

The functional dependence of Nu on the geometrical
parameters is presented as

Nu = F{ro,r.b. W.o}. {14y

3.2. Confirmatory results

In order to check the validity of the present method
and the computer program, the following cases for
which heat-transfer solutions are available were sol-
ved.

Case 1. Laminar fully developed flow heat transfer
in an annulus with radius ratio, R/R, = 0.2 with inner
cylinder at uniform heat flux and outer wall insulated
[12].

Case 2. Laminar fully developed flow heat transfer
in a uniform heat flux equilateral triangular infinite
rod array with P/D = 1.6 and 2.0 [3].

The results for the above cases are presented in
Table 1. The results are in excellent agreement with the

=S © ;
f{rdrdo available solutions.
Table 1. Confirmatory results
Nusselt number
Known Present Percentage
Cases solution solution difference Remarks
Case 1. Ry/R, =02 8.499 8471 0.33 Grid lines
{Analytical) intersect
orthogonally
with the
boundary
Case 2. P/ID =16 12.05 11.95 0.83 Non-orthogonal
(Numerical) intersection
P/D =20 15.26 15.11 0.98 with the
(Numerical) boundary
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Table 2. Predictions for single rod ring clusters
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Location

No. fRe Of Tax

St of Rod ¢ Grid Anal.  This 6

No. rods radii deg b, d, N, xN, [13] work ug,/a T Nu Toax/ 1y deg
1 5 0.20 450 0720 0800 14x17 1589 1597 2096 0093 3.664 7.67 00 092
2 5 0.20 450 0640 0800 16x20 1983 19.89 2251 0.147 4471 3.05 0.0 020
3 5 0.25 450 0675 0611 18x19 1475 1498 2371 0225 2353 4.69 00 093
4 5 0.25 450 0600 0611 19x23 17.14 1728 2493 0320 1.807 4.50 00 025
S 7 0.20 30,0 0720 0600 10x17 1743 1746 2080 0245 3.175 4.62 00 092
6 7 0.20 300 0640 0600 12x12 2431 2431 2071 0234 5659 2.50 00 020
7 7 0.25 300 0675 0409 15x19 1920 1925 2098 0415 3.069 2.39 00 025
8 7 0.25 300 0.600 0409 16x23 1952 1956 2676 0.747 0461 7.70 00 025
9 9 0.20 225 0720 0457 13x19 1615 16.19 2564 0.769 1.023 3.86 00 092
0 9 0.20 225 0.640 0457 12x20 2250 2276 2036 0.381 3.552 275 173 055
11 9 0.25 225 0675 0269 23x22 1512 1545, 2321 1.863  1.068 222 00 093
12 11 0.20 180 0720 0350 11x19 11.12 1122 2788 1.834 0.229 5.64 00 092

f x Re

Nu

26

24
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F1G. 5. Nu variation with number of rods in a single rod ring cluster.
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3.3. Single rod ring cluster results

The predictions of f - Re as a function of the angle of
symmetry sector ¢ (or the equivalent number of rods
in the assembly) are plotted in Fig. 4 with rod radii and
eccentricity ¢ defined by Min er al. [4] as parameters.
The solutions obtained by Min et al. and Zarling [13]
are shown for comparison. Results compare well with
Zarling’s data (see also Table 2). Substantial deviation
is observed in Min et al’s data for some geometries
which could be due to the point matching technique
used by them for satisfying the boundary conditions as
pointed out by Zarling [13].

The Nu variation is shown in Fig. 5. The curves
exhibit a similar trend as that of /- Re variation with
the number of rods. The curves for ro =r; =02; b
=072 and ry, = r; = 0.25: b = 0.675 merge together
beyond seven rods. This does not necessarily mean
that the heat-transfer coefficients in the two cases are
equal, because of the complicated geometrical factor,
D, involved in the definition of dimensionless tempera-
ture. The same is also the reason for unusually small
magnitudes of Nu for certain geometrical conditions.

3.4. 19-Rod cluster results

The effect of various geometrical parameters, viz. the
wall spacing W. ¢ and the rod ring radii for 19-rod
cluster with two rod rings is discussed below.

Effect of wall spacing W. The wall spacing W was
varied by varying b, and b, (b, = by) such that (b,
—b,) was equal to 0.3. This configuration was chosen
to facilitate comparison of the predictions with the
calculations of Mottaghian and Wolf {7]. The effect of
W on various characteristics is shown in Figs. 6--8. The
/- Re results presented in Fig. 6 are compared with
Mottaghian and Wolf’s [ 7] results and found to be in
good agreement. The /- Re product initially increases
with W, reaches a maximum at W = 0.35 and then
decreases continuously. Nu also varies in the same
fashion as shown in the figure but its behaviour is more
peakish than that of - Re and its maximum occurs at

T T T T T T T T 22
ro=r, =r2=r3=O.05
50— Analytical solutions for f Re of —{20
Mottaghion and Wolf (7]
- Present results o
o fRe Fa¥
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w

FiG. 6. /- Re and Nu as a function of wall spacing (W).

W = 0.3. Average temperature of the rod surfaces,
bulk mean temperature and their difference pass
through a sharp minimum at W = 0.3 as seen from
Fig. 7. The variation of average rod temperature for
each rod and average channel wall temperature with
W is plotted in Fig. 8. The central rod temperature is
initially constant and increases sharply for W > 0.3
because of the influence of peripheral rods. The
peripheral rod temperatures initially decrease as the
influence of the channel wall reduces, pass through
minima at W = 0.3 and increase beyond W = 0.3 due
to the influence of the central rod and their influence
on each other as they come closer. The channel wall
temperature decreases as W increases and remains at
nearly zero (which, incidentally implies that the chan-
nel wall temperature equals the mimmum fluid tem-
perature) bevond W = 0.3, indicating that there 15 no
influence of rod temperatures on the channel wall.

a.5 1 I r T T ! T I T
fo =r ) =r, *r y =0.05

}_ -4

F1G. 7. Bulk mean temperature (7,7). average temperature of
the rod surfaces { T;*) and their difference as a function of wall

spacing (W)
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F1G. 8. Average rod and channel wall temperatures as a
function of wall spacing (W).
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The change in characteristics at W = 0.3 is attri-
buted to the change in velocity profiles between the
central rod and the peripheral rods and between the
peripheral rods and the channel wall. The temperature
profiles are of course governed by the velocity profiles.
Velocity contours for three geometries with W = 0.2,
0.3 and 0.35 are shown in Fig. 9. For W = 0.2, the high
velocity region lies in between the central rod and the
first rod ring. The velocities are quite low in the vicinity
of the second rod ring and the channel wall. This

NDNY & N NO® oy
oo~ al o an— o

AT N @
OC = - O ]

FiG. 9. Constant velocity (/@) contour lines for 19-rod
cluster. ro =r; =r; =r; = 005; by = by; b,—~b, = 03: (a)
W= 02;(b) W = 0.3; (c) W = 0.35.

results in relatively low temperature at the central rod
and high temperatures at the peripheral rods and the
channel wall. At W = 0.3, the high velocity zone
spreads well beyond the second rod ring providing
relatively substantial mass flow rates near all the solid
walls. This leads to a comparatively favourable heat-
transfer situation with low temperatures prevailing at
all the surfaces. At W = 0.35 the high velocity zone
passes beyond the second rod ring having a maximum
cooling effect on the channel wall resulting in low
channel wall temperature and high rod temperatures.
The above discussion explains the sensitivity of the
wall temperatures to the parameter W. It should be
noted, however, that average wall temperatures have
been plotted in Fig. 8 and the unusual sharpness in the
curves at W = 0.3 is incidental.
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Effect of rod radii for triangular array of rods. In
order to facilitate comparison with Mottaghian and
Wolf’s [7] results a geometry was chosen such that
distance P between the centres of rods 1, 2 and 3 shown
in Fig. 10 was equal and thus forming a triangular
array. The values of by, b,, b3 and P are same as those
chosen by Mottaghian and Wolf.

In Fig. 10, on the X-axis are plotted the values of
P/D instead of D. This is done to correspond with
the manner of presentation adopted by Mottaghian

T i I T § H H 26
| b 04;b,=0.693;b5=0.8,P=0.4, ¢ =30°
50 . R 24
Analytical solutions for f.Re of
Mottaghion ond Wolf [71 22
Present results -
O f.Re z
O 5 N 120
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the dotg o '8
® // >
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,/
- s
10 1 d i i i
1.0 2.0 3.0
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F1G.10. > Re and Nu variation with pitch-to-diameter ratio
{P/D)in a 19-rod cluster with triangular array.
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1o =—Analytical solutions for _]4
f.Re of Mottaghian and Wolf[ 7]
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0.4 0.5 0.6 0.7 0.8
by

F1G. 11. f-Reand Nu variation with the radial displacement
of the second rod ring with radius (b,).

and Wolf. The - Re results compare well with their
solutions. f+Re and Nu monotonically increase with
P/D. Similar variation is observed for an infinite
triangular rod array as seen from the analytical
solutions for f-Re of Sparrow and Loeffler [1] and
from the predictions for Nu of Dwyer and Berry [3].
Effect of b,. The effect of changing the second rod
ringradius b, by keeping b, and b, fixed is presented in
Fig. 11. The solutions (which have been tested for grid
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Table 3. Predictions for multiple rod ring clusters
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No.
St o
No. rods

Rod Grid

radii

0.0500 300 0900

0,900
0.500
0.800
(0.800

0.400
0.700
0.700
0.350
0.650
0.630
0.300
0.600
0,600
0.400
(1.693
0.800

0.400
0.693
0.800
0.400
0.693
0.800
0.400
0.6923
(.800
0.400
0.600
0.800
0.400
0.500
0.800
0.400
0.400
(.800

0977

19 x 26

(¥

19 40500 300 0977 19x26

0.0500 300 0977 19 x26

00500 300 4977 19x206

0.0500 300 0977  19x26

0.1000 30,0 23 %26

td
i
*

ta
-1

00667 300 0.808

0.0500 300 0977 23x

20

0.0400 300 1102 232

0.0500  30.0 0977  19%x29

0.0500 300 0977

00500 300 0977  19x26

independence) agree fairly well with Mottaghian and
Wolf's [7] results for b, > 0.6, however, for b, < 0.6
the agreement with the analytical solutions is not
entirely satisfactory. For the same flow area, [ Re
increases with increasing ring radius b,: reaches a
maximum value at b, = 0.63 and then decreases with
further increase in b,. Therefore, from a pressure drop
point of view it seems to be more advantageous (o
place additional rods into the first or third rod ring
than to constitute a second rod ring,

The predicted Nu variation is also plotted in Fig. 11.
Nu gradually increases with decrease in b, reaches a
maximum value at b, = 0.66 and then decreases
steeply with further decrease in h,. Hence, from the
point of view of heat transfer and pressure drop
together, additional rods in the outermost ring seems
to be optimum for the specified case.

3.5. Effect of ¢
The effect of the angle of symmetry sector ¢ {or the
equivalent number of rods in the assembly) is pre-
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sented in Figs. 12 and 13. Rod radii are chosen as a
parameter. The j - Re predictions are compared with
the analytical solutions of Mottaghian and Wolf { 7].
The analytical solutions deviate substantially from the
present results as the rod radii and number of rods
increase. The solutions obtained by the present me-
thod for 28 rod cluster with ry = r, = ry == ry = 008
differ by about 20%, in spite of the grid independent
solution obtained by increasing the grid lines from 11
x 28 10 20 x 28 (see Fig. 3).

Since (i) the results agree well with the analytical
solutions for single rod ring array and for the cases
shown in Figs. 6, 10, 11, (i) the results are grid
independent, and (iit) the boundary condition is
satisfied at a sufficiently large number of points, the
present solutions are believed to be correct.

The curves for Nu are presented in Fig. 12, Nusselt
number decreases with the increase in rod diameters:
however, the variation of /- Re and Nu are difficult to
explain because of the complicated geometrical factor,
D, involved in the definitions of /- Re and T*.
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Table 3—continued
Location
No. b, f-Re of Tux
St of Rod ¢ b, Grid Anal.  This B 0

No. rods  radii deg b, d, N,xN, [7] wWOrk  Upa/t T* Nu T/ Ty deg ¢
0.400

13 19 00500 300 0800 0977 19x26 310 3157 1879 0.040 1445 395 0.0 0.85
0.800
0.400

14 19 00500 300 0800 0977 20x26 3148 1915 0.040 1443 3.89 15.0 085
0.800
0.400

15 19 00800 300 0800 0697 15x28 250 2675 2056 0094 8822 3.59 00 0.88
0.800
0.400

16 19+ 00800 300 0800 0697 16x28 26.75 2150 0097 8757 3.51 15.0 0.88
0.800
0.400

17 10 00500 600 0.800 1300 23x26 260 2607 1937 0.028 1473 4.48 0.0 08S
0.800
0.400

18 28 00500 200 0800 0775 21x26 300 3173 1962 0.116 9.86l 273 200 085
0.800
0.400

19 37 00500 150 0800 0637 16x26 255 2781 2102 0251 5836 240 150 085
0.800
0.400

20 46 00500 120 0.800 0536 13x26 21.0 2249 2171 0440 3524 2.33 120 0.85
0.800
0.400

21 10 00800 600 0800 1040 20x28 225 2240 2037 0051 8956 4.53 0.0 0.88
0.800
0.400

22 28 00800 200 0800 0507 20x28 208 2479 2264 0248 4421 3.30 00 0.88
0.800
0.400

23 37 00800 150 0.800 0385 16x28 14.7 1794 2293 0.789 1.734 2.84 150 0.88
0.800

+Doubly connected.

3.6. Comment on data presented in the Tables 2 and 3

Tables 2 and 3 present fluid flow and heat-transfer
characteristics of single rod ring and multiple rod ring
clusters respectively for 35 different configurations (in
each case the grid was chosen in such a manner that the
number of intersections at which the boundary con-
ditions were satisfied were more than 70). The ratios
Umay/U for these configurations vary between 1.6 and
2.8 which are normally found for noncircular ducts.
The maximum temperature to bulk mean temperature
ratios vary between 2.2 and 7.7. As expected, the
maximum temperature always occurs on the rod
surface where the gap between two solid walls is
smallest. The tables also provide comparison of the
presently predicted and previously analytically calcu-
lated results for - Re.

4. CONCLUSIONS

The following are the conclusions of the present
paper:

(1) Heat transfer results for fully developed laminar
flow in rod cluster assemblies of up to 46 rods have
been obtained for the first time using the sector
approach. Both singly, as well as doubly connected
sectors have been considered.

(2) The predicted f-Re results are in excellent
agreement with the analytical solutions for the ma-
jority of the cases. As the proximity between the rods
increases the agreement between the present pre-
diction and the analytical solutions of Mottaghian and
Wolf [ 7] is poor. This conclusion points to the manner
in which Mottaghian and Wolf have divided the region
for the superposed solution and subsequently treated
the boundary conditions. The present numerical sol-
utions are, however, believed to be accurate in all
cases.

(3) The predicted heat-transfer characteristics have
shown plausible trends. The predictions have also
brought out some unique features of the flow. For
example, for a 19-rod cluster, it has been found that
when W = 0.3, the characteristics exhibit a marked



944 R. W. BENODEKAR and A. W. DATE

T 1

,=0.4;p02=0.8;b3=0.8

Analytical solutions of -
Mottoghian and Wolf[7]

4 Op~

O Present results

Equivalent number of rods

I } i

37 28 9

m/12 T/ /6
Angle of the symmetry sector, ¢

10

48
/1S /3

F1G. 12. - Revariation with number of rods in a two rod ring
cluster.
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FI1G. 13. Nu variation with number of rods in a two rod ring
cluster.

change. Similarly it is also noticed that it is beneficial
from both the pressure-drop and heat-transfer point of
view to have only two rod rings in preference to three
rod rings for 19-rod clusters.

{4) Fluid flow and heat-transfer characteristics over
complex domains presented by symmetry sectors of

rod clusters have been efficiently predicted with CPU
times and storage not exceeding i min and 15K on
DEC system 10 computer.

Acknowledgement- --The financial support provided for the
present work by the Department of Atomic Energy, Govern-
ment of India, under the project No. BRNS/Engg/5/74 is
gratefully acknowledged.

REFERENCES

1. E. M. Sparrow and A. L. Loeffler, Jr.. Longitudinal flow
between cylinders arranged in a regular array, A.1.Ch.E.
JI5, 325329 (1959).

2. E. M. Sparrow, A. L. Loeffler, Jr. and H. A. Hubbard,
Heat transfer to longitudinal laminar flow between
cylinders, J. Heat Transfer 83, 415-422 (1961},

3. O.E. Dwyer and H. C. Berry, Laminar flow heat transfer
for in-line flow through unbaffled rod bundles, Nucl. Sci.
Engng 42, 81-88 (1970),

4. T. C. Min, H. W. Hoffman, T. C. Tucker and F. N.
Peebles, An analysis of axial flow through a circular
channel containing rod cluster. Dep. Theorer. Appl. Mech.
3, 667-690 (1966},

5. R. A. Axford, Summary of theoretical aspects of heat
transfer performance in clustered rod geometries, in Heat
Transfer in Rod Bundles, pp. 70-103. ASME, New York
(1968).

6. 1. P. Zarling, Laminar-flow pressure drop in symmetrical
finite rod bundle, Nucl. Sci. Engng 61(2), 282--285 (1976).

7. R. Mottaghian and L. Wolf, A two-dimensiona! analysis
of laminar fluid flow in rod bundles of arbitrary arrange-
ment, Int. J. Heat Mass Transfer 17, 1121- 1128 (1974).

8. D. I Gunn and C. W, Darling, Fluid flow and energy
losses in non-circular conduits, Trans. Instn Chem. Engrs
41, 163173 (1963).

9. K. Rehme, Laminarstrémung in stabbiindeln, Chemie-
Ingr-Tech. 43, 962966 (1971).

10. D. W. Peaceman and H. H. Rachford, Jr., The numerical
solution of parabolic and elliptic differential equations, J.
Soc. Ind. Appl. Math. 3(1), 28-41 {1955).

11, D. Greenspan, Introductory Numerical Analysis of Eflip-
tic Boundary Value Problems, pp. 39-42. Harper, New
York (1965).

12. W. M. Kays, Convective Heat and Mass Transfer, p. 114.
McGraw-Hill, New York (1966).

13. 1. P. Zarling, Personal Communication {16 December
1976}

14. B. Carnahan, H. A. Luther and J. O. Wilkes, Applied
Numerical Methods, p. 463. John Wiley, New York
(1969).

15. R. W. Benodekar and A. W. Date, Finite difference
procedure for solution of Poisson equation over complex
domains with Neumann boundary conditions, J. Com-
put. Fluids, to be published.

PREDICTION NUMERIQUE DES CARACTERISTIQUES DE TRANSFERT
THERMIQUE D'UN ECOULEMENT LAMINAIRE PLEINEMENT DEVELOPPE
DANS UN CANAL CIRCULAIRE CONTENANT UNE GRAPPE DE TUBES

Résumé—On présente les résultats de calcul pour un écoulement laminaire pleinement dévielopp_é dans des

assemblages de grappes de tubes. Le probléme est résolu par une methode de d}i&"érences finies ut1h§a_m_une

approche sectorielle ol le plus petit segment de symétrie de la grappe est considéré comme la caractéristique

de la section de passage. La perte de charge est rapportée au nombre de Reynolds dg frotgement et eI{e est

comparée aux résultats donnés dans 1a bibliographie. Les nombres de Nusselt sont présentés pour plusieurs

configurations. Les résultats sont exprimés en fonction de I'espacement des parois du canal, du déplacement
radial des anneaux des tubes, du nombre de tubes dans 'assemblage et du diamétre des tubes.
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) DIE NUMERISCHE BESTIMMUNG DER
WARMEUBERTRAGUNGSCHARAKTERISTIK EINER VOLL AUSGEBILDETEN
LAMINARSTROMUNG DURCH EINEN RUNDEN KANAL MIT STABBUNDELN

Zusammenfassung—Dieser Bericht beschreibt die Ergebnisse der Berechnung einer vol ausgebildeten
Laminarstromung zwischen Stabbiindelanordnungen. Die Aufgabe wird durch eine finite Differenzen-
methode geldst, bei der eine abschnittsweise Ndherung angewandt wird, wobei die kleinste Symmetrieeinheit
des Biindels als kleinstes charakteristisches Strémungsgebiet betrachtet wird. Die Druckabfallcharakteris-
tika werden in Abhéingigkeit von den Produkten aus Reibungskoeffizient und Reynolds-—-Zahl dargestelit
und werden mit den in der Literatur verfiigbaren Werten verglichen. Die Nusselt-Zahlen werden fiir
verschiedene Anordnungen aufgefiihrt. Die Ergebnisse werden ausgedriickt in Abhiingigkeit des Kanaldu-
rchmessers, der radialen Versetzung der Stibe, der Anzahl der Stibe innerhalb des Biindels und des
Durchmessers der Stiibe.

YUCIEHHBIN PACYET XAPAKTEPUCTUK TEIJIOOBMEHA TMPH MOJHOCTLIO
PA3BUTOM JJAMHUHAPHOM TEYEHUM B KPVYTJIbIX KAHAJIAX, COOAEPXALIMX
NYYKHW CTEPXHEHN

AndoTauss — B cTaTbhe NpEACTaBAEHb! PE3yNbTaThl PACYCTOB AMA AOJHOCTHIO PA3BHTOrO JaMH-
HapHoro o0Tekanus My4koB CTepXHeH. 3adada pewlaeTcs METONOM KOHEMHbIX DA3HOCTEH nyTem
pa3bMeHus BCErO KaHaa Ha CEKTOPBI, 1€ TOMLKO OTPEIOK HANMEHbIEH CHMMETPHH MyyYKa HYXKHO
NPUHUMATL 33 XAPAKTEPHYIO 06/1acTh TeveHHa. [Tepenan NaBieH!s BoIPAKAETCH HePes MPOU3BEACHHE
ko3pduuHeHTa TPeHUA Ha 4ucno PeliHONbAca M CpaBHMBACTCA C OMYONHKOBAHHBIMM JaHHLIMH.
Jlns HECKObKHX KOHGHIYpaLmii NPUBONATCA 3HAYCHUA YHcna HyccensTta. PelynbTaThl IpeacTasieHsl
kaK QYHKLAY DACCTOSHUA MEXTY CTCHKAMM KAHAMA, pafifa bHbIX CMELLEHUH NYYKOB, YHCNa CTEpKHei
B MIYMKE M IMAMETPa CTePXKHEN.
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